Graphene and nanowire transistors for cellular interfaces and electrical recording.

نویسندگان

  • Tzahi Cohen-Karni
  • Quan Qing
  • Qiang Li
  • Ying Fang
  • Charles M Lieber
چکیده

Nanowire field-effect transistors (NW-FETs) have been shown to be powerful building blocks for nanoscale bioelectronic interfaces with cells and tissue due to their excellent sensitivity and their capability to form strongly coupled interfaces with cell membranes. Graphene has also been shown to be an attractive building block for nanoscale electronic devices, although little is known about its interfaces with cells and tissue. Here we report the first studies of graphene field effect transistors (Gra-FETs) as well as combined Gra- and NW-FETs interfaced to electrogenic cells. Gra-FET conductance signals recorded from spontaneously beating embryonic chicken cardiomyocytes yield well-defined extracellular signals with signal-to-noise ratio routinely >4. The conductance signal amplitude was tuned by varying the Gra-FET working region through changes in water gate potential, V(wg). Signals recorded from cardiomyocytes for different V(wg) result in constant calibrated extracellular voltage, indicating a robust graphene/cell interface. Significantly, variations in V(wg) across the Dirac point demonstrate the expected signal polarity flip, thus allowing, for the first time, both n- and p-type recording to be achieved from the same Gra-FET simply by offsetting V(wg). In addition, comparisons of peak-to-peak recorded signal widths made as a function of Gra-FET device sizes and versus NW-FETs allowed an assessment of relative resolution in extracellular recording. Specifically, peak-to-peak widths increased with the area of Gra-FET devices, indicating an averaged signal from different points across the outer membrane of the beating cells. One-dimensional silicon NW- FETs incorporated side by side with the two-dimensional Gra-FET devices further highlighted limits in both temporal resolution and multiplexed measurements from the same cell for the different types of devices. The distinct and complementary capabilities of Gra- and NW-FETs could open up unique opportunities in the field of bioelectronics in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording

In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on ...

متن کامل

Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article

The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...

متن کامل

Nanoscale Semiconductor Devices as New Biomaterials.

Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices...

متن کامل

Design and Optimization of Input-Output Block using Graphene Nano-ribbon Transistors

In the electronics industry, scaling and optimization is final goal. But, according to ITRS predictions, silicon as basic material for semiconductors, is facing physical limitation and approaching the end of the path. Therefore, researchers are looking for the silicon replacement. Until now, carbon and its allotrope, graphene, look to be viable candidates. Among different circuits, IO block is ...

متن کامل

Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors

The emergence of nanoelectronics applied to neural interfaces has started few decades ago, and aims to provide new tools for replacing or restoring disabled functions of the nervous systems as well as further understanding the evolution of such complex organization. As the same time, graphene and other 2D materials have offered new possibilities for integrating micro and nano-devices on flexibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2010